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We study the steady state of an assembly of microtubules in a confined volume, analogous to the situation
inside a cell where the cell boundary forms a natural barrier to growth. We show that the dynamical equations
for growing and shrinking microtubules predict the existence of two steady states, with either exponentially
decaying or exponentially increasing distribution of microtubule lengths. We identify the regimes in parameter
space corresponding to these steady states. In the latter case, the apparent catastrophe frequency near the
boundary is found to be significantly larger than that in the interior. Both the exponential distribution of lengths
and the increase in the catastrophe frequency near the cell margin is in excellent agreement with recent
experimental observations.
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Microtubules are long, rigid polymers which play an im-
portant role in several cellular processes. In usual circum-
stances, microtubules form part of the cytosekelton network
and provide rigidity to the cellular stucture. Microtubules
are, however, highly dynamic structures, and constantly
switch stochastically between states of growth or shrinkage,
and may disappear altogether and nucleate again. This inter-
esting behavior is called dynamic instability, following its
discovery by Mitchison and co-workers[1–3]. When a grow-
ing microtubule starts shrinking by losing its monomer units,
it is said to have undergone “catastrophe” and the reverse
transition is called “rescue”. The basic monomer unit of a
microtubule is a dimer ofa andb tubulin, which is approxi-
mately 8 nm in length. Thea−b dimers are arranged head-
to-tail along a microtubule in protofilaments(usually 13 per
microtubule).

The highly dynamic nature of microtubules originates
from the hydrolysis of b-tubulin bound Guanine Tri-
Phosphate(GTP). Following hydrolysis, the GTP is con-
verted to Guanine Di-Phosphate(GDP) [4], and the GDP-
bound tubulin does not polymerize as well as its GTP
counterpart. The microtubule is thus a potentially unstable
structure, and alternates between states of polymerization
and depolymerization. The stability of microtubules has been
attributed to the existence of a “GTP cap” on a growing
microtubule(i.e., a patch ofT-tubulin at the end, while most
of the microtubule is made ofD-tubulin) [4], although con-
vincing experimental support for this model is still lacking
[5]. In this model, the microtubule becomes unstable and
depolymerizes when the cap is lost following stochastic fluc-
tuations in its length. It has also been suggested that the
stabilization of microtubules is primarily due to the strong
coupling between the rates of hydrolysis and polymerization
[5]. Conformational changes in tubulin subunits following
hydrolysis is also believed to initiate catastrophe. The rela-
tive rates of catastrophe and rescue, combined with the rates
of growth and shrinkage determine the character of a given
population of microtubules.

Theoretical and numerical models of microtubule dynam-
ics based on the concepts of dynamic instability have been
studied for more than a decade now[6,7]. An elegant and
simple mathematical model which incorporated most of the
important features of microtubule dynamics is due to
Dogterom and Leibler[7], which shall be the basis of our
study here. In this model, microtubules are assumed to nucle-
ate and grow from a flat substrate, and the dynamics is char-
acterized by the velocity of growthsvgd and shrinkagesvsd,
and the frequencies of catastrophesncd and rescuesnRd. In
the absence of any boundary which restricts the growth, a
steady state is achieved whennRpg,nCps, characterized by
an exponentially decaying distribution of lengths. When this
condition is not satisfied, no steady state is reached, and the
length distribution is Gaussian, with the mean length increas-
ing linearly with time, and the width evolving diffusively.

Inside cells, the growth of microtubules is constrained by
the presence of the cell boundary. Experimental observations
have shown that the parameters of microtubule dynamics
show a strong dependence on the proximity to cell boundary
[8]. In particular, the catastrophe frequency is markedly
higher near the periphery, compared to the cell interior. The
obvious explanation for this difference is that the growing
microtubule loses its “GTP cap” upon hitting the cell bound-
ary and is transformed to a shrinking state. In addition, the
length distribution of microtubules is found to be exponen-
tially increasing, with a possible dip near the boundary.

In this Brief Report, we show that the exponentially in-
creasing length distribution of microtubules can be under-
stood from the Dogterom-Leibler equations, and is a new
steady state which is a direct consequence of the presence of
the cell boundary. We compute the steady state distribution
exactly, and find excellent agreement with experimental ob-
servations. We also show that the observed increase in the
apparent catastrophe frequency near the cell margin can be
understood quantitatively within this model.

Let us consider a set of microtubules nucleating from a
substrate, and growing by the addition of tubulin dimers in
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the direction perpendicular to the plane of the substrate(the
z axis). For simplicity, we ignore the three-dimensional
structure of individual microtubules, and treat them as one-
dimensional polymers. Nucleation is assumed to take place
at empty nucleation sites at a raten. A microtubule in the
growing state addsT-tubulin at a ratepg per unit time, and a
microtubule in the shrinking state loses tubulin at a rateps
per unit time. Also, a microtubule in the growing state
switches to the shrinking state at a ratenc (catastrophe fre-
quency), and a microtubule in the shrinking state switches to
the growing state at a ratenR (rescue frequency). Both rescue
and catastrophe are assumed to be purely stochastic events.
The length of a “monomer unit” in our effectively one-
dimensional polymer is denoted byd (which is approxi-
mately 8 nm/13=0.6 nm, since a microtubule has 13
protofilaments of tubulin arranged in parallel). We used as
our unit of length for the rest of the paper(and, consequently,
all length variables will be dimensionless).

Our principal aim in this paper is to study explicitly the
steady state of the system in the presence of a boundary. We
assume that this boundary is located atz= l* . We denote by
p+sl ,td the fraction of sites in the substrate which have mi-
crotubules of lengthl at time t in growing state, andp−sl ,td
denotes the same fraction in shrinking state. By convention,
the fraction of vacant sites in the lattice at timet is denoted
p−s0,td and p+s0,td=0 at all timest. The discrete equations
for the dynamics of this assembly, including growth, shrink-
age, catastrophe, and rescue events are given by

] p−s0,td
] t

= − np−s0,td + psp−s1,td s1d

and

p+s0,td = 0,

] p+s1,td
] t

= np−s0,td − pgp+s1,td − nCp+s1,td + nRp−s1,td,

s2d

] p+sl,td
] t

= pgfp+sl − 1,td − p+sl,tdg + nRp−sl,td − ncp+sl,td,

1 , l , l* , s3d

] p−sl,td
] t

= psfp−sl + 1,td − p−sl,tdg + ncp+sl,td − nRp−sl,td,

1 ø l , l* . s4d

The presence of the boundary affects the dynamics of the
system in the following way: When a growing microtubule
reaches a lengthl* , it is instantaneously transformed to the
shrinking state with lengthl* . The equations representing this
process are given by

] p−sl* ,td
] t

= pgp+sl* − 1,td − psp−sl* ,td,

p+sl* ,td = 0. s5d

To find the steady state of the system, we set all time
derivatives to zero. For simplicity, we also omit time from
the expressions for all steady state quantities. From Eqs.(1)
and (2) we get the following relations:

p−s0d =
ps

n
p−s1d, s6d

p+s1d =
np−s0d + nRp−s1d

pg + nc
. s7d

After combining Eqs.(6) and (7), we find that

p−s1d =
pg + nc

ps + nR
p+s1d, s8d

and, after using Eq.(6) again,

p−s0d =
ps

n
F pg + nc

ps + nR
Gp+s1d. s9d

For l .1, we find the following relation betweenp+sld and
p−sld from Eqs.(3) and (4) [using onlyl .1 in Eq. (4)]:

p−sl + 1d − p−sld =
pg

ps
fp+sld − p+sl − 1dg, l ù 2. s10d

The general solution of this equation is

p−sld =
pg

ps
p+sl − 1d + C, l ù 2, s11d

whereC is an unknown constant. After substituting Eq.(11)
in Eq. (3) [and after equating the left-hand side(LHS) of Eq.
(3) to zero], we obtain the following equation forp+sld:

F1 +
nR

ps
Gp+sl − 1d +

nR

pg
C = F1 +

nc

pg
Gp+sld, l ù 2.

s12d

The solution to this equation has the form

p+sld = Aal + B, l ù 1 s13d

as may be verified by direct substitution. After equating
terms with the same power ofl, we obtain the following
expressions for the constantsa andB:

a =

1 +
nR

ps

1 +
nc

pg

, s14d

B = F nRps

ncps − nRpg
GC. s15d

The constantC may now be determined as follows. From Eq.
(4), for l =1, we have

psfp−s2d − p−s1dg = nRp−s1d − nCp+s1d s16d

in the steady state, whereas from Eq.(11) we have another
relation
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p−s2d =
pg

ps
p+s1d + C. s17d

We now substitute Eqs.(8) and (17) into Eq. (16) and
solve forC, which givesC=0. From Eq.(15), this also im-
plies B=0. It remains to determine the constantA, which is
found using normalization

Sl=0
l* p−sld + Sl=1

l*−1p+sld = 1 s18d

which may be written as

p−s0d + p−s1d + S1 +
pg

ps
DSl=1

l*−1p+sld = 1 s19d

after using Eq.(11). We now use Eqs.(8), (9), and (13) in
Eq. (19). The final result is

A = 3pg

n
+

pg

ps + Spg + ps

ps
DFal* − a

a − 1
G4

−1

. s20d

The solution in Eq.(13) can also be written as

p+sld = Aeal, a = ln31 +
nR

ps

1 +
nC

pg

4 . s21d

The complete length distribution ispsld=p+sld+p−sld, and
may now be written explicitly:

psl = 1d = ASpg

ps
+ aD , s22d

psld = AS1 +
pg

aps
Deal, 1 , l , l* ,

psl = l*d =
pg

ps

A

a
eal* . s23d

If nR/ps,nC/pg,a,0, we have an exponentially decaying
solution. On the other hand, ifnR/ps.nC/pg,a.1 and
a.0, we have an exponentially increasing steady state dis-
tribution of lengths.

When we consider the behavior of the solution in the limit
l* →`, from Eq.(20), we see that, in this limit, a steady state
is possible only ifa,1. For, if a.1, thenA,a−l* for large
l* and vanishes asl* →`. For a,1 and l* →`, sal* −ad / sa
−1d→a/ s1−ad, and so

Al*→` = 3pg

n
+

pg

ps + Spg + ps

ps
D a

1 − a
4

−1

a , 1. s24d

The exponentially decaying steady state length distribu-
tion when l* =`, with nR/ps,nC/pg, has been predicted by
Dogterom and Leibler in an earlier work[7]. The novel fea-
ture in the finitel* case is the steady state with exponentially
increasing distribution of lengths whennR/ps.nC/pg.

The exponentially increasing distribution of microtubule
lengths has indeed been observed in experiments with real
cells. Direct observation of microtubules inside cells has
been made possible recently[8]. These experiments, done on
centrosome-containing cytoplasts, observed almost persistent
growth of microtubules almost up to the cell boundary. How-
ever, the catastrophe rate showed a dramatic increase within
a zone about 3mm near the cell margin(0.08 s−1, compared
to 0.005 s−1 in the cell interior). The other parameters de-
scribing the microtubule dynamics werenR<0.12 s−1,vg
<17.8±13.8mm/min,vs<28.8±14.1mm/min. The param-
eterspg and ps are related tovg and vs as pg=vg/d and ps
=vs/d.

As a first test of our model, we compute the increase in
catastrophe frequency near the cell margin. Let us consider
all microtubules with length betweenl1 and l* . The total

number of such microtubules is given byN=ol1
l* psld. Using

the expression forpsld from Eq. (23), we find that

N =
A

a
F1 +

pg

aps
Gfeal* − eal1g.

The number of microtubules in this set undergoing catas-
trophe per unit time is given by

N* = ncN + pgp+sl* − 1d,

where the first term is the standard catastrophe term, and the
second term represents the additional catastrophe events aris-
ing from the microtubules hitting the boundary. The apparent
catastrophe frequency is given bync

* =N* /N. After substitut-
ing for psld andp+sl* −1d, we find that

nc
* = nc +

pga

1 +
pg

aps

e−a

1 − e−aD , s25d

whereD=sl* − l1d /d. After substituting for all the numerical
values and forl* − l1.3 mm as in experiments, we find that
nc

* .0.0964 s−1. This is in excellent agreement with the ex-
perimentally measured value of 0.08 s−1.

It is also interesting to compare the experimentally mea-
sured value ofa with the theoretical value. The observed
steady state length distribution is found to fit well with an
exponential functionPsld,egl with g−1.5.8 mm.[8] We can
convert this value to dimensionless units by multiplying with
our unit of length, which givesaexp=dg−1.1.03310−4. The
theoretical value is found from Eq.(21), using the measured
values of all the parameters, and turns out to bea<1.5
310−4. This is also in very good agreement with the experi-
mental value. The discrepancy between the computed and
observed values may be attributed to the significant experi-
mental error in the measurements ofvg andvs.

To conclude, we have studied the steady state of a micro-
tubule assembly in a confined geometry, where the growth of
individual microtubules is restricted in length. We found that,
in addition to the exponentially decaying length distribution
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in an infinite system, there is a novel steady state with expo-
nentially increasing distribution of lengths. This prediction is
in excellent agreement with experimental observations in
real cells, and is thus a direct verification of the dynamical
instability model of microtubule dynamics.
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